Tuesday, 24 October 2017

Gleitender Durchschnitt 6 Monate


Moving Average Dieses Beispiel lehrt, wie Sie den gleitenden Durchschnitt einer Zeitreihe in Excel berechnen. Eine bewegte Avearge wird verwendet, um Unregelmäßigkeiten (Spitzen und Täler) zu glätten, um Trends leicht zu erkennen. 1. Erstens, werfen wir einen Blick auf unsere Zeitreihe. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Klicken Sie hier, um das Analyse-ToolPak-Add-In zu laden. 3. Wählen Sie Verschiebender Durchschnitt aus, und klicken Sie auf OK. 4. Klicken Sie in das Feld Eingabebereich und wählen Sie den Bereich B2: M2. 5. Klicken Sie in das Feld Intervall und geben Sie 6 ein. 6. Klicken Sie in das Feld Ausgabebereich und wählen Sie Zelle B3 aus. 8. Zeichnen Sie ein Diagramm dieser Werte. Erläuterung: Da wir das Intervall auf 6 setzen, ist der gleitende Durchschnitt der Durchschnitt der letzten 5 Datenpunkte und der aktuelle Datenpunkt. Als Ergebnis werden Spitzen und Täler geglättet. Die Grafik zeigt eine zunehmende Tendenz. Excel kann den gleitenden Durchschnitt für die ersten 5 Datenpunkte nicht berechnen, da nicht genügend frühere Datenpunkte vorhanden sind. 9. Wiederholen Sie die Schritte 2 bis 8 für Intervall 2 und Intervall 4. Fazit: Je größer das Intervall, desto mehr werden die Spitzen und Täler geglättet. Je kleiner das Intervall, desto näher sind die gleitenden Mittelwerte zu den tatsächlichen Datenpunkten. Wenn die Berechnung eines laufenden gleitenden Durchschnittes ist die Platzierung der Mittelwert in der mittleren Zeitspanne Sinn Im vorherigen Beispiel haben wir den Durchschnitt der ersten 3 Zeiträume berechnet und platziert Es könnte also der Durchschnitt in der Mitte des Zeitintervalls von drei Perioden, das heißt, neben Periode 2, sein. Dies funktioniert gut mit ungeraden Zeitperioden, aber nicht so gut für sogar Zeitperioden. Also wo würden wir den ersten gleitenden Durchschnitt platzieren, wenn M 4 Technisch, würde der Moving Average bei t 2,5, 3,5 fallen. Um dieses Problem zu vermeiden, glätten wir die MAs unter Verwendung von M 2. So glätten wir die geglätteten Werte Wenn wir eine gerade Anzahl von Ausdrücken mitteln, müssen wir die geglätteten Werte glätten. Die folgende Tabelle zeigt die Ergebnisse mit M 4. Wenn diese Meldung erscheint, Ihr Browser hat entweder deaktiviert oder unterstützt kein JavaScript. Um die vollständigen Funktionen dieses Hilfesystems, z. B. die Suche, nutzen zu können, muss Ihr Browser JavaScript-Unterstützung aktiviert haben. Weighted Moving Averages Mit Simple Moving Averages wird jeder Datenwert in dem Windowquot, in dem die Berechnung durchgeführt wird, eine gleiche Bedeutung oder Gewicht zugewiesen. Es ist oft der Fall, vor allem in der Finanzdaten-Daten-Analyse, dass mehr chronologisch jüngsten Daten ein größeres Gewicht tragen sollte. In diesen Fällen wird der gewichtete gleitende Durchschnitt (oder der exponentielle gleitende Durchschnitt - siehe das folgende Thema) häufig bevorzugt. Betrachten Sie die gleiche Tabelle der Verkaufsdatenwerte für zwölf Monate: Um einen gewichteten gleitenden Durchschnitt zu berechnen: Berechnen Sie, wie viele Intervalle von Daten an der Moving Average Berechnung beteiligt sind (d. h. die Größe des rechnerischen Windowquot). Wenn das Berechnungsfenster n ist, wird der jüngste Datenwert in dem Fenster mit n multipliziert, der nächstletzte multipliziert mit n-1, der Wert vor dem multipliziert mit n-2 und so weiter für alle Werte im Fenster. Teilen Sie die Summe aller multiplizierten Werte durch die Summe der Gewichte, um den gewichteten gleitenden Durchschnitt über diesem Fenster zu erhalten. Stellen Sie den Weighted Moving Average-Wert in eine neue Spalte entsprechend der oben beschriebenen Positionierung der mittleren Mittelwerte ein. Um diese Schritte zu veranschaulichen, sollten Sie berücksichtigen, ob ein dreimonatiger gewichteter gleitender Durchschnitt der Verkäufe im Dezember erforderlich ist (unter Verwendung der obigen Tabelle der Verkaufswerte). Der Begriff "3-monthquot" impliziert, dass das Berechnungsfenster für das Windowquot 3 ist, daher sollte der Algorithmus für den Weighted Moving Average-Berechnungsfaktor für diesen Fall sein: Oder, wenn ein 3-Monats-Weighted Moving Average über den gesamten ursprünglichen Datenbereich ausgewertet würde : 3-Monats-gewichteter gleitender Durchschnitt

No comments:

Post a Comment